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(47) The fact that a) C(7)-C(8) is larger (10.7°) than the diene angle of twist 7.8° 
is unusual. The effect of this is that the B ring is not diplanar and it possesses 
approximate C5 symmetry with the mirror plane running through atoms C(6) 
and C(9). This does not affect the quadrant representation. 

(48) The assumed value is large compared to values used in calculations.38,4 

Since, according to our theory, a measured Ae must always be smaller 
than the contribution of the diene alone and considering Ae can be as large 
as 31 with values around 25 being common, we believe 5dlene ~40 is 
reasonable. 
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Commun., 121 (1971). 

(50) U. Weiss, W. B. Whalley, and I. L. Karle, J. Chem. Soc, Chem. Commun., 
16(1972). 

(51) G. A. Lane and N. L. Allinger, J. Am. Chem. Soc, 96, 5825 (1974). 
(52) NOTE ADDED IN PROOF. Recently, Weigang proposed a sector rule based 

on dynamic coupling of chromophores for estimation of the sign and 
magnitude of the Cotton effect for cisoid conjugated dienes (O. E. Weigang, 
Jr., J. Am. Chem. Soc, 101, 1913 (1979)). 
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Abstract: Tunneling corrections to the rate constant for unimolecular reactions in an isolated molecule are treated within the 
standard transition state (i.e., RRKM) theory of such processes. The microcanonical distribution relevant to the unimolecular 
case causes tunneling effects to enter in a somewhat more complicated fashion than in the analogous transition-state theory 
for thermally averaged bimolecular rate constants; e.g., even within the separable approximation they do not enter as simply 
a multiplicative correction factor. Application of the theoretical expressions to some unimolecular processes (H2CO —• H2 + 
CO, trans-HCOH — H2CO) of interest in the collisionless photochemistry of formaldehyde indicates that tunneling effects 
are quite significant for rates of 10' s - 1 or slower. Isotope effects are also considered and seen to be quite interesting. 

Much has been written over the years about tunneling cor­
rections to transition-state theory1 for thermal rate constants 
of bimolecular reactions, but there has been little discussion 
about the effect of tunneling in the analogous transition state 
(i.e., RRKM) theory2 of unimolecular reactions. The purpose 
of this paper is to consider such effects and to illustrate them 
by application to some processes of current interest in the 
photochemistry of formaldehyde. 

Brief Summary of the Standard Transition State (i.e., 
RRKM) Theory for Unimolecular Processes 

To simplify the presentation, rotational degrees of freedom 
will be ignored here; the Appendix shows how the formulas are 
modified to take proper account of total angular momentum 
conservation and other aspects of the rotational degrees of 
freedom. With this proviso, the standard expression2 for the 
unimolecular rate constant (units s - 1) of an isolated molecule 
with total energy E is 

* ( £ ) = ; 
N(E) 

(D 2irhN0'(E) 

where N(E) and N0(E) are the integral densities of states for 
the transition state and for the reactant molecule, respectively. 
Specifically 

N{E) = Zh(E-t*) 
n 

N0(E) = Zh(E-In) 
n 

where h(x) is the usual step-function 

0, x < 0 

(2a) 

(2b) 

h(x) = 
\,x > 0 

and en* and en are the vibrational energy levels of the transition 
state and the reactant molecule. In practice the vibrational 
energy levels are almost always assumed to be given by a sep­
arable harmonic oscillator approximation, so that 

en = E hu*j \ni + -

* = K 0 + 'E1 **>,•*(/!,+ ^ r 

(3a) 

(3b) 

where s is the number of vibrational degrees of freedom of the 
stable molecule, |«/j and {w/*i are the normal mode frequencies 
of the reactant molecule and transition state, and V0 is the 
"bare" barrier height, i.e., the energy of the saddle point of the 
potential energy surface (i.e., the transition state) relative to 
the minimum of the potential energy surface which corre­
sponds to the reactant molecule. The total energy E is also 
defined relative to the minimum of the potential-energy sur­
face. 

Because of the large sums involved in computing the den­
sities of states, it is customary in practice to approximate them 
by closed-form expressions. The simplest such approximation 
is the classical expression2 which gives 

N0(E) = r ^ (4a) 

N(E) = 

si n (ftw.o 

(s-\)!Sfl(hui*) 
I = ! 

(4b) 

With these approximations eq 1 gives the simple classical rate 

expression^ 

k(E) = A 
1 Camille and Henry Dreyfus Teacher Scholar, 

E- K0V-I 
(5a) 
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IV vhere A is a frequency factor (units s ') 

A = In J ^ i r f n ' w / * (5b) 

Modification to Inchide Tunneling 

The only simple way to include the effect of tunneling along 
the reaction coordinate in transition-state theory is to assume 
that this degree of freedom—i.e., motion along the reaction 
coordinate—is separable from the other degrees of freedom; 
this approximation is also consistent with the use of eq 3 for 
the energy levels. Within the separable approximation tun­
neling is accounted for by replacing N(E) in eq 1 by 
NQM(EV 

NQM(E) = E P(E- £„*) (6) 

where P(E]) is the one-dimensional tunneling probability as 
a function of the energy E\ in the reaction coordinate; in the 
classical limit of no tunneling P(E\) —* h(E\), and NQM(E) 
—• N(E). The expression for the unimolecular rate constant 
which incorporates tunneling is thus 

ZP{E-t„*) 
I<QM(E) = (7) 

2whN0'(E) 

If the barrier along the reaction coordinate is approximated 
as an inverted parabola, then the tunneling probability is given 
by 

P(Ei) = *«/(!+*«) 

with 

€ = 2irE\/hw'0 

where a>b is the magnitude of the imaginary frequency related 
to the barrier. The generalized Eckart potential la in general 
provides a more accurate representation of the barrier, and in 
this case the tunneling probability is given by 

sinh (a) sinh (b) 

where 

P(E1) = 

4ir 

sinh2 ] + 

(8) 

sh2 (c) 

a = —VE] + K 0 ( K O - ' / 2 + K," 1 / 2 )" 1 

nwb 

4TT 
7^Vf1 + K 1 ( K 0 - ' / 2 + K 1 - ' / 2 ) -
rc«b 

c = 2w V; V0Vi 
(huh)

2 16 

K0 is, as before, the barrier height relative to reactants, and K1 

is the barrier height relative to products; K1 — Ko is the exo-
ergicity of the reaction (neglecting zero-point energies). 

Equation 6 can be written in another form by the following 
manipulations: 

NQM(E) = Z P(E- €„*) 
n 

= CdE]P(E1) £ 5(E - £ , - £ „ * ) 
•J n 

NQM(E) is given by a convolution of the classical approxi­
mation to it, namely, N(E), and the tunneling probability. [For 
comparison, it is interesting to note that the tunneling cor­
rection factor T for a thermally averaged rate constant is given 
in terms of the tunneling probability by 

X e-E]/kT 
.. dE,P[E1)-

- 1 -V0 

-S. Vo 

kT 

&E]P'(E])e-E^kT 

One is tempted to use eq 9 with the approximation to N(E — 
E]) given by eq 4b, thereby obtaining the following simple 
expression for the tunneling rate constant: 

<QM (E)=A £ E-Vo IE 
dE]P'(E])' 

Vo 

Vo-EA'-i (10) 

where A is the same frequency factor as above. It should be 
emphasized, however, that this is not a good thing to do. Al­
though approximating No(E) by eq 4a is valid (at least for the 
applications below3), in the threshold region where tunneling 
is important there are so few terms that contribute to the sum 
in eq 6 that eq 4b is a poor approximation to N(E — E\) in the 
integrand of eq 9. Equation 10 thus gives values much too 
large, and one must retain the discrete sum; since only a few 
terms do contribute to the sum, this causes no computational 
difficulties. The final expression we use (except for the modi­
fication due to rotation discussed in the Appendix) is thus 

(5-1)! n hw, 
kQM(E)= , , ^ " I 1 ZP 

2irhEs E-V0- hu* • n + -3 
(11) 

where 

n = «i, /I2, •• •, ns-] 

for the applications below the tunneling probability for the 
Eckart barrier (eq 8) was used. 

Applications to Unimolecular Processes in the Ground 
Electronic State (So) of Formaldehyde 

The motivation for this work has been the current interest 
in the photochemistry of formaldehyde,4 for which there are 
several potentially relevant unimolecular processes that can 
take place on the potential-energy surface of the ground elec­
tronic state (So). (The excited electronic state S1 which is 
initially produced by laser excitation is assumed to undergo 
a radiationless transition back to So.) Figure 1 shows a sche­
matic of the potential energy surface5 for So, and we consider 
the unimolecular decomposition of formaldehyde to molecular 
products 

H2CO — H2 + CO (Rl) 

and the isomerization of the metastable species trans-hy-
droxymethylene—which has been suggested6 as the species 
first formed from S1—to formaldehyde: 

trans-UCOH -* H2CO (R2) 

dE]P(E])N'(E-E], 
- I -Vo 

Goddard and Schaefer5 have recently carried out extensive 
self-consistent field and configuration interaction calculations 
on formaldehyde and have determined all the parameters 
needed to evaluate the rate expressions given above. The 
energies of the two stable species (i.e., H2CO and HCOH) and 
of the two transition states are shown in Figure 1, and Table 

where N(E — E\) is the density'of states defined by eq 2a; i.e., 1 gives the six vibrational frequencies and three rotation con-

X E-V0 
I 

-V0 

dE]P'(E])N(E-E]) (9) 
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REACTION COORDINATE 

Figure 1. Schematic of the potential energy surface for the ground elec­
tronic state (S0) of formaldehyde. Units of energy are kcal/mol, and the 
values shown are from the work in ref 5. 

Table I. Vibrational Frequencies and Rotation Constants" 

H 2CO 

2843 
2766 
1746 
1501 
1247 
1164 

1.13 
1.30 
9.41 

//ww-HCOH 

3634 
2684 
1595 
1264 
1101 
1093 

1.04 
1.16 
10.52 

TS-M 

2760 
1654 
1137 
941 
697 
2288 i 

1.05 
1.18 
9.06 

TS-R 

3675 
2803 
2339 
1568 
1221 
2299 i 

1.09 
1.25 
8.86 

Deuterated Species 
D2CO 

2160 
2056 
1700 
1106 
990 
938 

0.88 
1.07 
4.70 

trans -DCOD 

2525 
1979 
1430 
933 
921 
799 

0.84 
0.97 
6.28 

TS-M 

2186 
1503 
820 
724 
505 
1900 i 

0.76 
0.89 
5.45 

TS-R 

2759 
2134 
1735 
1408 
974 

1675 i 

0.89 
1.10 
4.75 

" The first six values are the vibrational frequencies, and the three 
values below it are the rotation constants. Units for all are cm"', TS-M 
and TS-R are the molecular and rearrangement transition states in­
dicated in Figure 1. 

stants for all four species. Unless stated otherwise, all rate 
constants given below were calculated from eq A.8, which for 
J = 0 is identical with eq 11, with the tunneling probability of 
eq8 . 

Figure 2 shows the unimolecular rate constant for reaction 
Rl as a function of total energy E (relative to the bottom of 
the potential energy surface of H2CO), and for comparison the 
classical rate constant is also shown (broken line). [The clas­
sical rates were all computed by direct state count of the 
transition state, i.e., from eq A.8 or 11 with the tunneling 
probability P(E\) replaced by the step^function h(E\).] The 
classical rate vanishes at the energy VQ, the "bare" barrier 
height plus the zero-point energy of the transition state: 

V0 = V0 + 'Z ^hU1* (12) 
1=1 2 

90 100 MO 120 
E (kcal/mole) 

Figure 2. Unimolecular rate constant for the reaction indicated, as a 
function of total energy, for total angular momentum J = O. The solid 
curve includes tunneling effects and is computed from eq 1 1. The broken 
curve is the classical rate, computed from eq 11 with the modification 

but one sees that tunneling allows a significant rate (>109 s - ' ) 
at this threshold energy. The rate_has fallen only to 106 s - 1 at 
an energy ~ 8 kcal/mol below V0. The exponential energy 
dependence of_ft(£) (i.e., the linearity of the semilogarithmic 
plot) for E < Vo also indicates that the process is dominated 
by tunneling in this region. 

Figure 3 shows similar results for the rate constant of re­
action R2, and one again sees that tunneling is substantial. 

To assess the effect of rotation, calculations were also carried 
out for total angular momentum J > 0. The rate constant in 
general decreases with increasing J, but the effect is not large 
for the present examples: for J= 10, as large a value as is 
probably of interest, the rate constant for both reactions is 
decreased by a factor of ~2.5 at E = 90 kcal/mol, and the 
factor decreases approximately uniformly to ~1.2 at E = 120 
kcal/mol. 

Isotope Effects 

Tunneling is significant for these reactions because they 
primarily involve the motion of hydrogen atoms, as evidenced 
by the large imaginary barrier frequencies /a>b for the transi­
tion states in Table I. One thus expects large isotope effects in 
the tunneling region if H atoms are replaced by D atoms. The 
relevant frequencies (and rotation constants) for the deuterated 
species have also been determined by Goddard and Schaefer5 

and are given in Table I. 
Figure 4 shows the isotope effect, i.e., the ratio of the hy­

drogen to the deuterium rate constant for the two reactions. 
It is easy to see that the classical rate expression (eq 5) gives 
an energy-independent isotope ratio, and one sees in Figure 4 
that this limit is approached for energies above the classical 
thresholds. In the threshold region and below, however, the 
isotope ratio is strongly dependent on energy: for energies 
significantly below the classical threshold there is an expo­
nential energy dependence (i.e., the semilogarithmic plot is 
linear), but near the classical threshold itself the energy de­
pendence is quite complicated, showing a pronounced mini­
mum, in the vicinity of which the deuterium versions of the 
reactions are actually faster than the hydrogen versions. 

Although comparing different isotopes at the same total 
energy (as in Figure 4) is the most meaningful comparison 
from a theoretical point of view, the experimental situation 
often dictates otherwise. Thus for formaldehyde the excitation 
energies from the ground vibrational state of So to the ground 
vibrational state of S1 are4 80.6 kcal/mol for H2CO and 80.9 
kcal/mol for D2CO, and since the zero-point energies of H2CO 
and D2CO are 16.1 and 12.8 kcal/mol, respectively, the total 
energies resulting from these vibrationless excitations are 96.7 
kcal/mol for H2CO and 93.7 kcal/mol for D2CO. At these 
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OO HO 

E (kca l /mo le ) 

Figure 3. Same as Figure 2. 

energies the present calculations give 

A:,H = 5.8 X 106s- ' ,fc,D= 1.4 X 105 s"1 (13a) 

/e2
H = 1.9 X 107 s-1, k2

D = 5.7 X 10s s-1 (13b) 

where k\ and £2 refer to reactions Rl and R2, respectively. 
(The values for k \H and k \D in eq 13a include an extra factor 
of 2 due to symmetry, which has heretofore been omitted; this 
is because H2CO and D2CO have a twofold rotation axis and 
thus a symmetry number of 2.) These rates are for total an­
gular momentum J = O; for J = 10 they are all about a factor 
of 2 smaller. 

Similar calculations have been carried out for the mixed 
isotope HDCO and the rates are, perhaps not unexpectedly, 
intermediate between those for H2CO and D2CO. For the vi-
brationless S0 -* Si excitation, for example, the total energy 
is 95.3 kcal/mol and the rate of reaction Rl is 

fciHD = 9 . 5 X 1O5S- (14) 

Concluding Remarks 

The main purpose of this paper has been to show how tun­
neling can be incorporated in the transition state (i.e., RRKM) 
theory for unimolecular reactions in a manner analogous to 
the way it is included in transition-state theory for thermal 
bimolecular reactions. Because the unimolecular case corre­
sponds to a fixed energy rather than a fixed temperature, the 
effect of tunneling is somewhat more complicated; i.e., it does 
not enter as simply a multiplicative correction factor but rather 
in a more convoluted manner. 

With regard to the applications to formaldehyde, one must 
be somewhat cautious regarding the specific values obtained 
for the rate constants because it is known that, when tunneling 
effects are substantial, the separable approximation for tun­
neling can be poor.Ic Nevertheless, the results obtained for the 
rates do indicate that, on the time scale of interest in the col-
lisionless photochemistry of formaldehyde, i.e., 1O-5-10—6 s, 
tunneling is likely to play a significant role. 
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Appendix. Effect of Rotational Degrees of Freedom 
There are three degrees of freedom associated with the 

overall rotation of a nonlinear molecule, the quantum numbers 

• 0.5 
H,CO — H , + CO 

• HCOH — H - C O 

90 100 

E (kcal/mole) 

Figure 4. Isotope effects. Plotted is the logarithm of the ratio of hydrogen 
to deuterium rate constants for the reactions indicated, as a function of 
total energy. 

for which we designate J, Mj, K. J, the total angular mo­
mentum quantum number, and Mj, its projection onto a 
space-fixed axis, are always conserved, while K is in general 
not conserved. (For a rigid symmetric top, K is also conserved.) 
One thus needs to define the unimolecular rate constant k{E,J) 
which corresponds to a fixed value of total angular momentum 
J as well as total energy E; because of the isotropy of space, 
the rate is independent of Mj. 

We assume that K is a statistical degree of freedom, i.e., that 
it interchanges energy statistically with all the vibrational 
degrees of freedom. The unimolecular rate constant is then 
given by 

k{E,J) = 
N(EJ) 

lirh 
HN0(E1J) 

dE 

where 

N(E1J)= Z Zh(E- enJ.K*) 
-J n 

N0(EJ)= Z Y. h(E - e„,j,K) 

(A.l) 

(A.2a) 

(A.2b) 

kn.y.A-*} and |e„,./,x'i being the rotational-vibrational energy 
levels of the transition state and of the reactant molecule, re­
spectively. In practice these energy levels are obtained by as­
suming a rigid rotor-harmonic oscillator approximation: 

(nj,K = WJX + t hu, L + ^ (A.3a) 

t«j.K* = ^o + Wj,K* + J) ha,* L + i j (A.3b) 

where Wj,K* and Wj,K are the rotational energies of the 
transition state and of the reactant molecule. Since the energy 
levels of most asymmetric rotors are reasonably well approx­
imated by assuming an "almost symmetric top", we invoke that 
approximation here, so that7 

Wj,K = ̂ (A+ B)[J(J + I ) -A: 2 ] +CK2 (AAa) 

Wj,K* = ^(A* + B*)[J(J+ I)-AT2] +C*A: (A.4b) 

where (A, B, C) and (A*, B*, C*) are the three rotation 
constants of the molecule and of the transition state. (A and 
B are chosen as the two most nearly equal rotation constants 
of the three A, B, and C, and A* and B* similarly.) 
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The sums over vibrational quantum number n may be ap­
proximated as before,2 but, because we consider cases of small 
J, the discrete sum over K is retained. Analogous to eq 4 the 
classical approximation to the sum over n in eq 4.2 thus 
gives 

K='J ( 5 - 1 ) ! n (hu,*) 
;=1 

N0(EJ) - £ V^MZ 
K=~J si IT hui 

(A.5a) 

(A.5b) 

/ = i 

so that the classical rate expression which replaces eq 5a is 

E (E- V0-WJSY-* 

k(EJ) = A-— (A.6) 

E (E-WJS-' 
K'-J 

A being the frequency factor of eq 5b. Note that, for J = 0, eq 
A.6 reduces to eq 5a. 

The effect of tunneling along the reaction coordinate is in­
cluded in the same manner as before, by replacing N(EJ) by 
NQM(EJ): 

NQM(EJ)= E T.P(E-enJS) 
K=-J n 

(A.7) 

where again P(Ei) is the one-dimensional tunneling proba­
bility. The exDression for the tunneling rate constant which 

generalizes eq 11 by including rotation is thus 

(s- 1)! TI hu>, 

kQM(EJ) =• 

E E^ 
K=-J n 

2irh 

E-V0 WJS - huA 

" + 2 

E (E - WJS 
K=-J 

(A.8) 

with the rotational energies Wj K and WJS given by eq A.4. 
One notes that for the case J = 0 eq A.8 reduces to the result 
in the text (eq 11) that ignores rotation altogether. 
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Abstract: Ab initio calculations employing the STO-3G basis set have been performed on numerous substituted derivatives of 
the strained (or unsaturated) molecules ethylene, cyclopropane, cyclobutane, acetylene, spiropentane, bicyclobutane, cyclo-
propene, tetrahedrane, and cubane. Substituents investigated include Li, BeH, BH2, BH3

-, CH3, CH2+, CH2
- , CN, CF3, 

NH2, NH3
+, OCH3, OH, O - , and F. Stabilization of strained molecules is achieved with c-donating, ^-withdrawing, and 

most x-donating substituents. a withdrawal destabilizes unsaturated linkages. Effects decrease in the order of increasing satu­
ration, e.g., ethynyl > vinyl > cyclopropyl. The stabilizing effects of Li and O - substituents are particularly striking. The 
strain in tetralithiotetrahedrane is calculated to be less than one-fourth of that in tetrahedrane. 

The concept of strain in small-ring organic compounds, 
originally introduced by Adolph von Baeyer in 1885, has re­
mained fundamentally unchanged since its inception. It is 
generally accepted3 that (Baeyer) strain energy is associated 
with compression of bond angles at saturated carbon centers 
below the ideal tetrahedral angle. This view assumes electronic 
effects other than those resulting from angle bending to be 
unimportant; in particular it allows for no influence of sub­
stituents. This view is also implicit in the widely accepted 
group-increment scheme for calculating molecular heats of 
formation,4 in which the strain energy of a substituted small 
ring is taken to be equal to that of the unsubstituted parent. A 
recent, comprehensive review of strained molecules5 questions 
this view after examining the small body of available ther-

mochemical data on substituted ring systems. It is the purpose 
of this paper to supplement published data with quantities 
derived from theoretical calculations, and demonstrate that, 
contrary to the established view, appropriate substitution can 
indeed have dramatic effects on the magnitudes of strain 
energies. 

Interactions between substituents and strained ring systems 
have been examined in other contexts. It has been noted6,7 that 
substitution on cyclopropane can result in changes in the ge­
ometry of the ring. Substitution at the 7 position of 1,3,5-tro-
pylidene ( la) alters the position of the equilibrium with the 
more strained norcaradiene (lb) isomer.8-11 Similarly, a 
substituent's electronic character determines whether it oc­
cupies the 1 or the 5 position on semibullvalene (2).1 ' '12 Cy-
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